Files
Pond/doc/main.tex
2025-09-29 00:22:13 +08:00

498 lines
19 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

%!TEX program = xelatex
% 完整编译: xelatex -> biber/bibtex -> xelatex -> xelatex
\documentclass[lang=cn,a4paper]{elegantpaper}
\title{Pond}
\author{作者 \\ Patrick}
\date{\zhdate{2025/03/09}}
% 本文档命令
\usepackage{array}
\usepackage{pgfplots}
\usepackage{soul}
\usepackage{physics}
\usepackage{amssymb}
\newcommand{\ccr}[1]{\makecell{{\color{#1}\rule{1cm}{1cm}}}}
\addbibresource[location=local]{reference.bib} % 参考文献,不要删除
\pgfplotsset{compat=1.15}
\usetikzlibrary{arrows}
\graphicspath{ {../images/} }
\begin{document}
\vspace*{\fill}
\begin{figure}[h]
\begin{center}
\includegraphics[width=0.5\textwidth]{THE_LAST_PROOF.png}
\end{center}
\end{figure}
\begin{center}
\sffamily {
\textbf{\LARGE{Silence TLP}}
\Large{2025 / 03 / 09}
}
\end{center}
\vspace*{\fill}
\thispagestyle{empty}
DOI: 11.4514/sil.tlp.2025.0000001
\thispagestyle{empty}
\newpage
\setcounter{page}{1}
\maketitle
\begin{abstract}
Pond 是一个试验性项目,使用了 ElegantPaper 模板。
\keywords{NonsenseBullshit}
\end{abstract}
\section{题目}
如图1$\triangle ABC$中,$BD$平分$\angle ABC$$AD \bot BD$$E$$BC$中点,$EF$交射线$CA$$F$,交$AB$$G$$GB = GE$$DE = m$$DF = n$.
\begin{enumerate}
\item 在图1中找到与$\angle BAC$相等的角,并证明;
\item$BD$的长(用$m$$n$表示);
\item 如图2$AD$$BC$的中垂线于$M$,连接$CM$,若$CB$平分$\angle ACM$,求$\dfrac{m}{n}$的值.
\end{enumerate}
% 图1
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm,scale=4]
\clip(-1.2,-0.1) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.15cm,yshift=0.1cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{original_pic1}
\end{figure}
% 图2
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm,scale=4]
\clip(-1.2,-0.5) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865476,0.7071067811865476)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865476,0.7071067811865476);
\draw [line width=0.8pt] (-0.414213562373095,0.585786437626905)-- (-1.,0.);
\draw [line width=0.8pt] (-0.414213562373095,0.585786437626905)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8pt] (0.,-0.4142135623730955)-- (1.,0.);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (0.,-0.4142135623730955);
\draw [line width=0.8pt] (0.,0.)-- (0.,-0.4142135623730955);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.15cm,yshift=0.1cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (0, -0.414213562373095) node[xshift=0cm,yshift=-0.15cm] (M) {$M$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{original_pic2}
\end{figure}
\section{解析}
\subsection{第一小问}
$\angle BAC = \angle BDE$.
证明如图3$AB$中点$H$为圆心,$HA$长度为半径作$\odot \mathrm{H}$,交$BC$$K$,连接$HK$$HE$$HD$
所以$HA=HB=HK=\dfrac{1}{2}AB$
% 图3
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.2) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic1}
\end{figure}
$\because AD \bot BD$$\therefore \angle ADB=\dfrac{\pi}{2}$
$\because H$$AB$中点,$\therefore HD=\dfrac{1}{2}AB$
$\therefore HD=HA=HB=HK=\dfrac{1}{2}AB$
$\therefore$$D$$\odot \mathrm{H}$上;
$\angle EBD = \alpha$
$\because BD$平分$\angle ABC$
$\therefore \angle ABD = \angle EBD = \alpha$
$\therefore \angle ABC = 2\alpha$
$\because HB=HD$
$\therefore \angle ABD = \angle HDB = \alpha$
$\therefore \angle EBD = \angle HDB$
$\therefore HD \mathop{//} BC$
$\because GB=GE$
$\therefore \angle ABC = \angle GEB = 2\alpha$
$\because HB=HK$
$\therefore \angle ABC = \angle HKB = 2\alpha$
$\therefore \angle GEB = \angle HKB$
$\therefore HK \mathop{//} EF$
$\because HD \mathop{//} BC$
$\therefore$四边形$HDEK$是平行四边形,
$\therefore HD=HK=EK$
$\therefore \angle KHE = \angle KEH$
$\because H$$AB$的中点,$E$$BC$的中点,
$\therefore HE \mathop{//} AC$
$\therefore \angle KEH = \angle C$
$\therefore \angle KHE = \angle KEH = \angle C$
$\therefore \angle HKB = \angle KHE + \angle KEH = 2\angle C = 2\alpha$
$\therefore \angle C = \alpha$
$\because \angle GEB = \angle C + \angle F = \alpha + \angle F = 2\alpha$
$\therefore \angle F = \alpha$
$\therefore \angle C = \angle F = \alpha$
$
\begin{aligned}
\because & \angle BDE = \pi - \angle EBD - \angle GEB = \pi - \alpha - 2\alpha = \pi - 3\alpha \\
& \angle BAC = \pi - \angle ABC - \angle C = \pi - 2\alpha - \alpha = \pi - 3\alpha
\end{aligned}
$
$\therefore \angle BAC = \angle BDE$. $\square$
\subsection{第二小问}
如图4连接$AK$
% 图4
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.2) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.);
% \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-1.,0.);
% \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-0.7071067811865475,0.2928932188134524);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic2}
\end{figure}
$\because AB$$\odot \mathrm{H}$直径,
$\therefore \angle AKB = \dfrac{\pi}{2}$
$\because HD = HK$
$\therefore$平行四边形$HDEK$是菱形,
$\because DE=m$
$\therefore HD = EK = DE = m$
$\therefore HF = HA = HB = HD = HK = m$
$\therefore AB = 2m$
$\because DF = n$
$\therefore EF = DE + DF = m + n$
$\because EB = EK + BK$$EK = m$
$\therefore EB = m + BK$
$\therefore BK = n$
$\therefore \cos \angle ABC = \cos 2\alpha = \dfrac{BK}{AB} = \dfrac{n}{2m}$
$\therefore \cos \alpha = \cos \dfrac{2\alpha}{2} = \sqrt{\dfrac{1+\dfrac{n}{2m}}{2}} = \sqrt{\dfrac{2m+n}{4m}}$
$\therefore BD = AB \times \cos \angle ABD = AB \times \cos\alpha = 2m \times \sqrt{\dfrac{2m+n}{4m}} = \sqrt{2m^2 + mn}$. $\square$
\subsection{第三乐章}
% 图5
如图5$AM$$BC$于R
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.5) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt] (-0.2928932188134525,0.2928932188134525)-- (0.,-0.414213562373095);
\draw [line width=0.8 pt] (0.,-0.414213562373095)-- (1.,0.);
\draw [line width=0.8 pt] (0.,0.)-- (0.,-0.414213562373095);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0cm,yshift=-0.2cm] (K) {$K$};
\draw (0, -0.414213562373095) node[xshift=0cm,yshift=-0.15cm] (M) {$M$};
\draw (-0.17157287525381, 0) node[xshift=-0.2cm,yshift=-0.2cm] (R) {$R$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic3}
\end{figure}
$\because BD \bot AR$
$\therefore \angle ADB = \angle RDB = \dfrac{\pi}{2}$
$\mathrm{Rt}\triangle ADB$$\mathrm{Rt}\triangle RDB$
$$
\begin{cases}
\angle ADB = \angle RDB \\
BD = BD \\
\angle ABD = \angle EBD
\end{cases}
$$
$\therefore \triangle ADB \cong \triangle RDB (ASA)$
$\therefore AB = RB = 2m$
$\because EB = BK + EK = m + n$
$\because E$$BC$的中点,
$\therefore BC = 2EB = 2m + 2n$
$\therefore RC = BC - RB = 2m + 2n - 2m = 2n$$EC = BC - EB = 2m + 2n - (m + n) = m + n$
$\because EM$$BC$的中垂线,
$\therefore EM \bot BC$
$\therefore \angle MEC = \dfrac{\pi}{2}$
$\because CB$平分$\angle ACM$
$\therefore \angle ACB = \angle ECM = \alpha$
$\therefore CM = EC \times \sec\alpha = RC \times \cos\alpha$
$\because \cos\alpha = \sqrt{\dfrac{2m+n}{4m}}$
$\therefore (m + n)\sec\alpha = 2n\sqrt{\dfrac{2m+n}{4m}}$
整理得
\[
\qty(\dfrac{4m^2}{2n^2})=1
\]
\[
\dfrac{m^2}{n^2}=\dfrac{1}{2}
\]
\[
\dfrac{m}{n}=\pm\dfrac{\sqrt{2}}{2}
\]
因为$m>0$$n>0$,所以
$$
\dfrac{m}{n}=\dfrac{\sqrt{2}}{2}
$$
$\square$
\subsection{\texorpdfstring{$F$}{}\texorpdfstring{$\odot \mathrm{H}$}{}上的证明}
如图6连接$HF$$FB$
% 图6
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.2) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-0.7071067811865475,0.2928932188134524);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic4}
\end{figure}
$\angle ABF = \beta$
$\because E$$BC$的中点,
$\therefore EB = EC$
$\because \angle C = \angle EFC = \alpha$
$\therefore EF = EC$
$\therefore EF = EB$
$\therefore \angle BFE = \angle EBF$
$\because \angle EBF = \angle ABC + \angle ABF = 2\alpha + \beta$
$\therefore \angle BFE = 2\alpha + \beta$
$\therefore \angle BFC = \angle BFE + \angle EFC = 2\alpha + \beta + \alpha = 3\alpha + \beta$
$\because \angle EBF + \angle C = \angle ABF + \angle ABC + \angle C = \beta + 2\alpha + \alpha = 3\alpha + \beta$
$\therefore \angle BFC = \angle EBF + \angle C$
$\because \angle BFC + \angle EBF + \angle C = \pi$
$\therefore 2\angle BFC = \pi$
$\therefore \angle BFC = \dfrac{\pi}{2}$
$\because H$$AB$中点,$\therefore HF=\dfrac{1}{2}AB$
$\therefore HF = HA = HB = HD = HK = \dfrac{1}{2}AB$
$\therefore$$F$$\odot \mathrm{H}$上. $\square$
\nocite{*}
\printbibliography[heading=bibintoc, title=\ebibname]
\appendix
%\appendixpage
\addappheadtotoc
\end{document}