%!TEX program = xelatex % 完整编译: xelatex -> biber/bibtex -> xelatex -> xelatex \documentclass[lang=cn,a4paper]{elegantpaper} \title{Pond} \author{作者 \\ Patrick} \date{\zhdate{2025/03/09}} % 本文档命令 \usepackage{array} \usepackage{pgfplots} \usepackage{soul} \usepackage{physics} \usepackage{amssymb} \newcommand{\ccr}[1]{\makecell{{\color{#1}\rule{1cm}{1cm}}}} \addbibresource[location=local]{reference.bib} % 参考文献,不要删除 \pgfplotsset{compat=1.15} \usetikzlibrary{arrows} \graphicspath{ {../images/} } \begin{document} \vspace*{\fill} \begin{figure}[h] \begin{center} \includegraphics[width=0.5\textwidth]{THE_LAST_PROOF.png} \end{center} \end{figure} \begin{center} \sffamily { \textbf{\LARGE{Silence TLP}} \Large{2025 / 03 / 09} } \end{center} \vspace*{\fill} \thispagestyle{empty} DOI: 11.4514/sil.tlp.2025.0000001 \thispagestyle{empty} \newpage \setcounter{page}{1} \maketitle \begin{abstract} Pond 是一个试验性项目,使用了 ElegantPaper 模板。 \keywords{Nonsense,Bullshit} \end{abstract} \section{题目} 如图1,在$\triangle ABC$中,$BD$平分$\angle ABC$,$AD \bot BD$,$E$为$BC$中点,$EF$交射线$CA$于$F$,交$AB$于$G$,$GB = GE$,$DE = m$,$DF = n$. \begin{enumerate} \item 在图1中找到与$\angle BAC$相等的角,并证明; \item 求$BD$的长(用$m$,$n$表示); \item 如图2,$AD$交$BC$的中垂线于$M$,连接$CM$,若$CB$平分$\angle ACM$,求$\dfrac{m}{n}$的值. \end{enumerate} % 图1 \begin{figure}[h] \centering \begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm,scale=4] \clip(-1.2,-0.1) rectangle (1.2,0.8); % 边框 % \draw[red] (current bounding box.south west) rectangle (current bounding box.north east); \draw [line width=0.8pt] (-1.,0.)-- (1.,0.); \draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.); \draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.); \begin{scriptsize} \draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$}; \draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$}; \draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$}; \draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$}; \draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$}; \draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.15cm,yshift=0.1cm] (F) {$F$}; \draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$}; \end{scriptsize} \end{tikzpicture} \caption{} \label{original_pic1} \end{figure} % 图2 \begin{figure}[h] \centering \begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm,scale=4] \clip(-1.2,-0.5) rectangle (1.2,0.8); % 边框 % \draw[red] (current bounding box.south west) rectangle (current bounding box.north east); \draw [line width=0.8pt] (-1.,0.)-- (1.,0.); \draw [line width=0.8pt] (-0.7071067811865476,0.7071067811865476)-- (0.,0.); \draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865476,0.7071067811865476); \draw [line width=0.8pt] (-0.414213562373095,0.585786437626905)-- (-1.,0.); \draw [line width=0.8pt] (-0.414213562373095,0.585786437626905)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.); \draw [line width=0.8pt] (0.,-0.4142135623730955)-- (1.,0.); \draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (0.,-0.4142135623730955); \draw [line width=0.8pt] (0.,0.)-- (0.,-0.4142135623730955); \begin{scriptsize} \draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$}; \draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$}; \draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$}; \draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$}; \draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$}; \draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.15cm,yshift=0.1cm] (F) {$F$}; \draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$}; \draw (0, -0.414213562373095) node[xshift=0cm,yshift=-0.15cm] (M) {$M$}; \end{scriptsize} \end{tikzpicture} \caption{} \label{original_pic2} \end{figure} \section{解析} \subsection{第一小问} $\angle BAC = \angle BDE$. 证明:如图3,以$AB$中点$H$为圆心,$HA$长度为半径作$\odot \mathrm{H}$,交$BC$于$K$,连接$HK$,$HE$,$HD$, 所以$HA=HB=HK=\dfrac{1}{2}AB$, % 图3 \begin{figure}[h] \centering \begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5] \clip(-1.2,-0.2) rectangle (1.2,0.8); % 边框 % \draw[red] (current bounding box.south west) rectangle (current bounding box.north east); \draw [line width=0.8pt] (-1.,0.)-- (1.,0.); \draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.); \draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524); \begin{scriptsize} \draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$}; \draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$}; \draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$}; \draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$}; \draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$}; \draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$}; \draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$}; \draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$}; \draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$}; \end{scriptsize} \end{tikzpicture} \caption{} \label{step_pic1} \end{figure} $\because AD \bot BD$,$\therefore \angle ADB=\dfrac{\pi}{2}$, $\because H$是$AB$中点,$\therefore HD=\dfrac{1}{2}AB$, $\therefore HD=HA=HB=HK=\dfrac{1}{2}AB$, $\therefore$点$D$在$\odot \mathrm{H}$上; 设$\angle EBD = \alpha$, $\because BD$平分$\angle ABC$, $\therefore \angle ABD = \angle EBD = \alpha$, $\therefore \angle ABC = 2\alpha$, $\because HB=HD$, $\therefore \angle ABD = \angle HDB = \alpha$, $\therefore \angle EBD = \angle HDB$, $\therefore HD \mathop{//} BC$, $\because GB=GE$, $\therefore \angle ABC = \angle GEB = 2\alpha$, $\because HB=HK$, $\therefore \angle ABC = \angle HKB = 2\alpha$, $\therefore \angle GEB = \angle HKB$, $\therefore HK \mathop{//} EF$, $\because HD \mathop{//} BC$, $\therefore$四边形$HDEK$是平行四边形, $\therefore HD=HK=EK$, $\therefore \angle KHE = \angle KEH$, $\because H$是$AB$的中点,$E$是$BC$的中点, $\therefore HE \mathop{//} AC$, $\therefore \angle KEH = \angle C$, $\therefore \angle KHE = \angle KEH = \angle C$, $\therefore \angle HKB = \angle KHE + \angle KEH = 2\angle C = 2\alpha$, $\therefore \angle C = \alpha$, $\because \angle GEB = \angle C + \angle F = \alpha + \angle F = 2\alpha$, $\therefore \angle F = \alpha$, $\therefore \angle C = \angle F = \alpha$; $ \begin{aligned} \because & \angle BDE = \pi - \angle EBD - \angle GEB = \pi - \alpha - 2\alpha = \pi - 3\alpha \\ & \angle BAC = \pi - \angle ABC - \angle C = \pi - 2\alpha - \alpha = \pi - 3\alpha \end{aligned} $, $\therefore \angle BAC = \angle BDE$. $\square$ \subsection{第二小问} 如图4,连接$AK$, % 图4 \begin{figure}[h] \centering \begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5] \clip(-1.2,-0.2) rectangle (1.2,0.8); % 边框 % \draw[red] (current bounding box.south west) rectangle (current bounding box.north east); \draw [line width=0.8pt] (-1.,0.)-- (1.,0.); \draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.); \draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.); % \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-1.,0.); % \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-0.7071067811865475,0.2928932188134524); \begin{scriptsize} \draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$}; \draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$}; \draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$}; \draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$}; \draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$}; \draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$}; \draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$}; \draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$}; \draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$}; \end{scriptsize} \end{tikzpicture} \caption{} \label{step_pic2} \end{figure} $\because AB$是$\odot \mathrm{H}$直径, $\therefore \angle AKB = \dfrac{\pi}{2}$, $\because HD = HK$, $\therefore$平行四边形$HDEK$是菱形, $\because DE=m$, $\therefore HD = EK = DE = m$, $\therefore HF = HA = HB = HD = HK = m$, $\therefore AB = 2m$, $\because DF = n$, $\therefore EF = DE + DF = m + n$, $\because EB = EK + BK$,$EK = m$, $\therefore EB = m + BK$, $\therefore BK = n$, $\therefore \cos \angle ABC = \cos 2\alpha = \dfrac{BK}{AB} = \dfrac{n}{2m}$, $\therefore \cos \alpha = \cos \dfrac{2\alpha}{2} = \sqrt{\dfrac{1+\dfrac{n}{2m}}{2}} = \sqrt{\dfrac{2m+n}{4m}}$, $\therefore BD = AB \times \cos \angle ABD = AB \times \cos\alpha = 2m \times \sqrt{\dfrac{2m+n}{4m}} = \sqrt{2m^2 + mn}$. $\square$ \subsection{第三乐章} % 图5 如图5,记$AM$交$BC$于R, \begin{figure}[h] \centering \begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5] \clip(-1.2,-0.5) rectangle (1.2,0.8); % 边框 % \draw[red] (current bounding box.south west) rectangle (current bounding box.north east); \draw [line width=0.8pt] (-1.,0.)-- (1.,0.); \draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.); \draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.); \draw [line width=0.8 pt] (-0.2928932188134525,0.2928932188134525)-- (0.,-0.414213562373095); \draw [line width=0.8 pt] (0.,-0.414213562373095)-- (1.,0.); \draw [line width=0.8 pt] (0.,0.)-- (0.,-0.414213562373095); \begin{scriptsize} \draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$}; \draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$}; \draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$}; \draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$}; \draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$}; \draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$}; \draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$}; \draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$}; \draw (-0.414213562373095, 0) node[xshift=0cm,yshift=-0.2cm] (K) {$K$}; \draw (0, -0.414213562373095) node[xshift=0cm,yshift=-0.15cm] (M) {$M$}; \draw (-0.17157287525381, 0) node[xshift=-0.2cm,yshift=-0.2cm] (R) {$R$}; \end{scriptsize} \end{tikzpicture} \caption{} \label{step_pic3} \end{figure} $\because BD \bot AR$, $\therefore \angle ADB = \angle RDB = \dfrac{\pi}{2}$, 在$\mathrm{Rt}\triangle ADB$与$\mathrm{Rt}\triangle RDB$中 $$ \begin{cases} \angle ADB = \angle RDB \\ BD = BD \\ \angle ABD = \angle EBD \end{cases} $$ $\therefore \triangle ADB \cong \triangle RDB (ASA)$ $\therefore AB = RB = 2m$, $\because EB = BK + EK = m + n$, $\because E$是$BC$的中点, $\therefore BC = 2EB = 2m + 2n$, $\therefore RC = BC - RB = 2m + 2n - 2m = 2n$,$EC = BC - EB = 2m + 2n - (m + n) = m + n$, $\because EM$是$BC$的中垂线, $\therefore EM \bot BC$, $\therefore \angle MEC = \dfrac{\pi}{2}$, $\because CB$平分$\angle ACM$, $\therefore \angle ACB = \angle ECM = \alpha$, $\therefore CM = EC \times \sec\alpha = RC \times \cos\alpha$, $\because \cos\alpha = \sqrt{\dfrac{2m+n}{4m}}$ $\therefore (m + n)\sec\alpha = 2n\sqrt{\dfrac{2m+n}{4m}}$, 整理得 \[ \qty(\dfrac{4m^2}{2n^2})=1 \] \[ \dfrac{m^2}{n^2}=\dfrac{1}{2} \] \[ \dfrac{m}{n}=\pm\dfrac{\sqrt{2}}{2} \] 因为$m>0$,$n>0$,所以 $$ \dfrac{m}{n}=\dfrac{\sqrt{2}}{2} $$ $\square$ \subsection{点\texorpdfstring{$F$}{}在\texorpdfstring{$\odot \mathrm{H}$}{}上的证明} 如图6,连接$HF$,$FB$, % 图6 \begin{figure}[h] \centering \begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5] \clip(-1.2,-0.2) rectangle (1.2,0.8); % 边框 % \draw[red] (current bounding box.south west) rectangle (current bounding box.north east); \draw [line width=0.8pt] (-1.,0.)-- (1.,0.); \draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.); \draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.); \draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-1.,0.); \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-0.7071067811865475,0.2928932188134524); \begin{scriptsize} \draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$}; \draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$}; \draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$}; \draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$}; \draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$}; \draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$}; \draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$}; \draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$}; \draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$}; \end{scriptsize} \end{tikzpicture} \caption{} \label{step_pic4} \end{figure} 设$\angle ABF = \beta$, $\because E$是$BC$的中点, $\therefore EB = EC$, $\because \angle C = \angle EFC = \alpha$, $\therefore EF = EC$, $\therefore EF = EB$, $\therefore \angle BFE = \angle EBF$, $\because \angle EBF = \angle ABC + \angle ABF = 2\alpha + \beta$, $\therefore \angle BFE = 2\alpha + \beta$, $\therefore \angle BFC = \angle BFE + \angle EFC = 2\alpha + \beta + \alpha = 3\alpha + \beta$, $\because \angle EBF + \angle C = \angle ABF + \angle ABC + \angle C = \beta + 2\alpha + \alpha = 3\alpha + \beta$, $\therefore \angle BFC = \angle EBF + \angle C$, $\because \angle BFC + \angle EBF + \angle C = \pi$, $\therefore 2\angle BFC = \pi$, $\therefore \angle BFC = \dfrac{\pi}{2}$, $\because H$是$AB$中点,$\therefore HF=\dfrac{1}{2}AB$, $\therefore HF = HA = HB = HD = HK = \dfrac{1}{2}AB$, $\therefore$点$F$在$\odot \mathrm{H}$上. $\square$ \nocite{*} \printbibliography[heading=bibintoc, title=\ebibname] \appendix %\appendixpage \addappheadtotoc \end{document}