First commit

This commit is contained in:
2025-09-29 00:22:13 +08:00
commit 93a2b5164e
12 changed files with 1546 additions and 0 deletions

497
doc/main.tex Normal file
View File

@@ -0,0 +1,497 @@
%!TEX program = xelatex
% 完整编译: xelatex -> biber/bibtex -> xelatex -> xelatex
\documentclass[lang=cn,a4paper]{elegantpaper}
\title{Pond}
\author{作者 \\ Patrick}
\date{\zhdate{2025/03/09}}
% 本文档命令
\usepackage{array}
\usepackage{pgfplots}
\usepackage{soul}
\usepackage{physics}
\usepackage{amssymb}
\newcommand{\ccr}[1]{\makecell{{\color{#1}\rule{1cm}{1cm}}}}
\addbibresource[location=local]{reference.bib} % 参考文献,不要删除
\pgfplotsset{compat=1.15}
\usetikzlibrary{arrows}
\graphicspath{ {../images/} }
\begin{document}
\vspace*{\fill}
\begin{figure}[h]
\begin{center}
\includegraphics[width=0.5\textwidth]{THE_LAST_PROOF.png}
\end{center}
\end{figure}
\begin{center}
\sffamily {
\textbf{\LARGE{Silence TLP}}
\Large{2025 / 03 / 09}
}
\end{center}
\vspace*{\fill}
\thispagestyle{empty}
DOI: 11.4514/sil.tlp.2025.0000001
\thispagestyle{empty}
\newpage
\setcounter{page}{1}
\maketitle
\begin{abstract}
Pond 是一个试验性项目,使用了 ElegantPaper 模板。
\keywords{NonsenseBullshit}
\end{abstract}
\section{题目}
如图1$\triangle ABC$中,$BD$平分$\angle ABC$$AD \bot BD$$E$$BC$中点,$EF$交射线$CA$$F$,交$AB$$G$$GB = GE$$DE = m$$DF = n$.
\begin{enumerate}
\item 在图1中找到与$\angle BAC$相等的角,并证明;
\item$BD$的长(用$m$$n$表示);
\item 如图2$AD$$BC$的中垂线于$M$,连接$CM$,若$CB$平分$\angle ACM$,求$\dfrac{m}{n}$的值.
\end{enumerate}
% 图1
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm,scale=4]
\clip(-1.2,-0.1) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.15cm,yshift=0.1cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{original_pic1}
\end{figure}
% 图2
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1cm,y=1cm,scale=4]
\clip(-1.2,-0.5) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865476,0.7071067811865476)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865476,0.7071067811865476);
\draw [line width=0.8pt] (-0.414213562373095,0.585786437626905)-- (-1.,0.);
\draw [line width=0.8pt] (-0.414213562373095,0.585786437626905)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8pt] (0.,-0.4142135623730955)-- (1.,0.);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (0.,-0.4142135623730955);
\draw [line width=0.8pt] (0.,0.)-- (0.,-0.4142135623730955);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.15cm,yshift=0.1cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (0, -0.414213562373095) node[xshift=0cm,yshift=-0.15cm] (M) {$M$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{original_pic2}
\end{figure}
\section{解析}
\subsection{第一小问}
$\angle BAC = \angle BDE$.
证明如图3$AB$中点$H$为圆心,$HA$长度为半径作$\odot \mathrm{H}$,交$BC$$K$,连接$HK$$HE$$HD$
所以$HA=HB=HK=\dfrac{1}{2}AB$
% 图3
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.2) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic1}
\end{figure}
$\because AD \bot BD$$\therefore \angle ADB=\dfrac{\pi}{2}$
$\because H$$AB$中点,$\therefore HD=\dfrac{1}{2}AB$
$\therefore HD=HA=HB=HK=\dfrac{1}{2}AB$
$\therefore$$D$$\odot \mathrm{H}$上;
$\angle EBD = \alpha$
$\because BD$平分$\angle ABC$
$\therefore \angle ABD = \angle EBD = \alpha$
$\therefore \angle ABC = 2\alpha$
$\because HB=HD$
$\therefore \angle ABD = \angle HDB = \alpha$
$\therefore \angle EBD = \angle HDB$
$\therefore HD \mathop{//} BC$
$\because GB=GE$
$\therefore \angle ABC = \angle GEB = 2\alpha$
$\because HB=HK$
$\therefore \angle ABC = \angle HKB = 2\alpha$
$\therefore \angle GEB = \angle HKB$
$\therefore HK \mathop{//} EF$
$\because HD \mathop{//} BC$
$\therefore$四边形$HDEK$是平行四边形,
$\therefore HD=HK=EK$
$\therefore \angle KHE = \angle KEH$
$\because H$$AB$的中点,$E$$BC$的中点,
$\therefore HE \mathop{//} AC$
$\therefore \angle KEH = \angle C$
$\therefore \angle KHE = \angle KEH = \angle C$
$\therefore \angle HKB = \angle KHE + \angle KEH = 2\angle C = 2\alpha$
$\therefore \angle C = \alpha$
$\because \angle GEB = \angle C + \angle F = \alpha + \angle F = 2\alpha$
$\therefore \angle F = \alpha$
$\therefore \angle C = \angle F = \alpha$
$
\begin{aligned}
\because & \angle BDE = \pi - \angle EBD - \angle GEB = \pi - \alpha - 2\alpha = \pi - 3\alpha \\
& \angle BAC = \pi - \angle ABC - \angle C = \pi - 2\alpha - \alpha = \pi - 3\alpha
\end{aligned}
$
$\therefore \angle BAC = \angle BDE$. $\square$
\subsection{第二小问}
如图4连接$AK$
% 图4
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.2) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.);
% \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-1.,0.);
% \draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-0.7071067811865475,0.2928932188134524);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic2}
\end{figure}
$\because AB$$\odot \mathrm{H}$直径,
$\therefore \angle AKB = \dfrac{\pi}{2}$
$\because HD = HK$
$\therefore$平行四边形$HDEK$是菱形,
$\because DE=m$
$\therefore HD = EK = DE = m$
$\therefore HF = HA = HB = HD = HK = m$
$\therefore AB = 2m$
$\because DF = n$
$\therefore EF = DE + DF = m + n$
$\because EB = EK + BK$$EK = m$
$\therefore EB = m + BK$
$\therefore BK = n$
$\therefore \cos \angle ABC = \cos 2\alpha = \dfrac{BK}{AB} = \dfrac{n}{2m}$
$\therefore \cos \alpha = \cos \dfrac{2\alpha}{2} = \sqrt{\dfrac{1+\dfrac{n}{2m}}{2}} = \sqrt{\dfrac{2m+n}{4m}}$
$\therefore BD = AB \times \cos \angle ABD = AB \times \cos\alpha = 2m \times \sqrt{\dfrac{2m+n}{4m}} = \sqrt{2m^2 + mn}$. $\square$
\subsection{第三乐章}
% 图5
如图5$AM$$BC$于R
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.5) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt] (-0.2928932188134525,0.2928932188134525)-- (0.,-0.414213562373095);
\draw [line width=0.8 pt] (0.,-0.414213562373095)-- (1.,0.);
\draw [line width=0.8 pt] (0.,0.)-- (0.,-0.414213562373095);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0cm,yshift=-0.2cm] (K) {$K$};
\draw (0, -0.414213562373095) node[xshift=0cm,yshift=-0.15cm] (M) {$M$};
\draw (-0.17157287525381, 0) node[xshift=-0.2cm,yshift=-0.2cm] (R) {$R$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic3}
\end{figure}
$\because BD \bot AR$
$\therefore \angle ADB = \angle RDB = \dfrac{\pi}{2}$
$\mathrm{Rt}\triangle ADB$$\mathrm{Rt}\triangle RDB$
$$
\begin{cases}
\angle ADB = \angle RDB \\
BD = BD \\
\angle ABD = \angle EBD
\end{cases}
$$
$\therefore \triangle ADB \cong \triangle RDB (ASA)$
$\therefore AB = RB = 2m$
$\because EB = BK + EK = m + n$
$\because E$$BC$的中点,
$\therefore BC = 2EB = 2m + 2n$
$\therefore RC = BC - RB = 2m + 2n - 2m = 2n$$EC = BC - EB = 2m + 2n - (m + n) = m + n$
$\because EM$$BC$的中垂线,
$\therefore EM \bot BC$
$\therefore \angle MEC = \dfrac{\pi}{2}$
$\because CB$平分$\angle ACM$
$\therefore \angle ACB = \angle ECM = \alpha$
$\therefore CM = EC \times \sec\alpha = RC \times \cos\alpha$
$\because \cos\alpha = \sqrt{\dfrac{2m+n}{4m}}$
$\therefore (m + n)\sec\alpha = 2n\sqrt{\dfrac{2m+n}{4m}}$
整理得
\[
\qty(\dfrac{4m^2}{2n^2})=1
\]
\[
\dfrac{m^2}{n^2}=\dfrac{1}{2}
\]
\[
\dfrac{m}{n}=\pm\dfrac{\sqrt{2}}{2}
\]
因为$m>0$$n>0$,所以
$$
\dfrac{m}{n}=\dfrac{\sqrt{2}}{2}
$$
$\square$
\subsection{\texorpdfstring{$F$}{}\texorpdfstring{$\odot \mathrm{H}$}{}上的证明}
如图6连接$HF$$FB$
% 图6
\begin{figure}[h]
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm,scale=5]
\clip(-1.2,-0.2) rectangle (1.2,0.8);
% 边框
% \draw[red] (current bounding box.south west) rectangle (current bounding box.north east);
\draw [line width=0.8pt] (-1.,0.)-- (1.,0.);
\draw [line width=0.8pt] (-0.7071067811865475,0.7071067811865475)-- (0.,0.);
\draw [line width=0.8pt] (1.,0.)-- (-0.7071067811865475,0.7071067811865475);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-1.,0.);
\draw [line width=0.8pt] (-0.41421356237309503,0.5857864376269049)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8pt] (-0.2928932188134525,0.2928932188134525)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524) circle (0.414213562373095cm);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.2928932188134525,0.2928932188134525);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.2928932188134524)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (0.,0.)-- (-0.7071067811865475,0.2928932188134524);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.41421356237309503,0.5857864376269049)-- (-0.41421356237309503,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-1.,0.);
\draw [line width=0.8 pt,dash pattern=on 3pt off 3pt] (-0.7071067811865475,0.7071067811865475)-- (-0.7071067811865475,0.2928932188134524);
\begin{scriptsize}
\draw (-0.414213562373095, 0.585786437626905) node[xshift=0.1cm,yshift=0.2cm] (A) {$A$};
\draw (-1,0) node[xshift=-0.2cm,yshift=-0.1cm] (B) {$B$};
\draw (1,0) node[xshift=0.2cm,yshift=-0.1cm] (C) {$C$};
\draw (-0.292893218813452, 0.292893218813452) node[xshift=0.15cm,yshift=0.1cm] (D) {$D$};
\draw (0,0) node[xshift=0.1cm,yshift=0.2cm] (E) {$E$};
\draw (-0.707106781186547, 0.707106781186547) node[xshift=-0.1cm,yshift=0.15cm] (F) {$F$};
\draw (-0.5, 0.5) node[xshift=0cm,yshift=-0.25cm] (G) {$G$};
\draw (-0.707106781186547, 0.292893218813452) node[xshift=-0.1cm,yshift=0.15cm] (H) {$H$};
\draw (-0.414213562373095, 0) node[xshift=0.15cm,yshift=-0.15cm] (K) {$K$};
\end{scriptsize}
\end{tikzpicture}
\caption{}
\label{step_pic4}
\end{figure}
$\angle ABF = \beta$
$\because E$$BC$的中点,
$\therefore EB = EC$
$\because \angle C = \angle EFC = \alpha$
$\therefore EF = EC$
$\therefore EF = EB$
$\therefore \angle BFE = \angle EBF$
$\because \angle EBF = \angle ABC + \angle ABF = 2\alpha + \beta$
$\therefore \angle BFE = 2\alpha + \beta$
$\therefore \angle BFC = \angle BFE + \angle EFC = 2\alpha + \beta + \alpha = 3\alpha + \beta$
$\because \angle EBF + \angle C = \angle ABF + \angle ABC + \angle C = \beta + 2\alpha + \alpha = 3\alpha + \beta$
$\therefore \angle BFC = \angle EBF + \angle C$
$\because \angle BFC + \angle EBF + \angle C = \pi$
$\therefore 2\angle BFC = \pi$
$\therefore \angle BFC = \dfrac{\pi}{2}$
$\because H$$AB$中点,$\therefore HF=\dfrac{1}{2}AB$
$\therefore HF = HA = HB = HD = HK = \dfrac{1}{2}AB$
$\therefore$$F$$\odot \mathrm{H}$上. $\square$
\nocite{*}
\printbibliography[heading=bibintoc, title=\ebibname]
\appendix
%\appendixpage
\addappheadtotoc
\end{document}