mirror of
https://github.com/ElegantLaTeX/ElegantBook.git
synced 2026-01-26 04:14:35 +08:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
828e91ec7e |
@@ -208,7 +208,7 @@
|
||||
\setmonofont{Inconsolata}%Palatino Linotype
|
||||
%-中文字体设置-%
|
||||
\RequirePackage{xeCJK}
|
||||
\setCJKmainfont[BoldFont={黑体},ItalicFont={楷体}]{HYShuSongYiJ}%方正书宋_GBK Adobe Song Std L华文中宋
|
||||
\setCJKmainfont[BoldFont={黑体},ItalicFont={楷体}]{宋体}%方正书宋_GBK Adobe Song Std L华文中宋
|
||||
\setCJKsansfont[BoldFont={黑体}]{方正中等线简体}
|
||||
\setCJKmonofont{方正中等线简体}
|
||||
\XeTeXlinebreaklocale "zh"
|
||||
@@ -328,6 +328,7 @@
|
||||
\end{figure}}
|
||||
|
||||
|
||||
|
||||
%% Example with counter
|
||||
\newcounter{Newexam}[chapter]
|
||||
\renewcommand{\theNewexam}{\thechapter.\arabic{Newexam}}
|
||||
@@ -388,7 +389,7 @@
|
||||
|
||||
\def\maketitle{%
|
||||
\thispagestyle{empty}
|
||||
\@cover
|
||||
% \@cover
|
||||
\vfill
|
||||
\vspace*{2cm}
|
||||
\begin{center}
|
||||
|
||||
14
guide.tex
14
guide.tex
@@ -1,10 +1,11 @@
|
||||
%!TEX program = xelatex
|
||||
\documentclass[color=green,mathpazo,titlestyle=hang,11pt]{elegantbook}
|
||||
\documentclass[color=blue,mathpazo,titlestyle=hang,11pt]{elegantbook}
|
||||
|
||||
\author{ddswhu \& LiamHuang0205}
|
||||
\email{elegantlatex2e@gmail.com}
|
||||
|
||||
\zhtitle{优美的\LaTeX{} 书籍}
|
||||
\zhend{}
|
||||
\zhend{模板}
|
||||
\entitle{Elegant\LaTeX{} Book}
|
||||
\enend{Template}
|
||||
\version{2.10}
|
||||
@@ -174,7 +175,7 @@ $E$ and $F$ be two events such that $\mbf{P}(E)=\mbf{P}(F)=1/2$, and $\mbf{P}(E\
|
||||
let $S=l^\infty=\big\{(x_n)\mid \exists\, M \text{ such that } \forall n, |x_n|\leq M,x_n\in \mathbb{R}\big\}$, $\rho_{\infty}(x,y)=\sup\limits_{n\geq 1}|x_n-y_n|$, show that $\big(l^\infty,\rho_{\infty}\big)$ is complete.
|
||||
\end{exercise}
|
||||
|
||||
\begin{newthem}[勾股定理]
|
||||
\begin{newthem}[勾股定理]\label{them}
|
||||
勾股定理的数学表达(Expression)为
|
||||
\[a^2+b^2=c^2\]
|
||||
其中$a,b$为直角三角形的两条直角边长,$c$为直角三角形斜边长。
|
||||
@@ -187,7 +188,7 @@ let $S=l^\infty=\big\{(x_n)\mid \exists\, M \text{ such that } \forall n, |x_n|\
|
||||
|
||||
\lipsum[4]
|
||||
|
||||
\begin{newprop}[最优性原理]
|
||||
\begin{newprop}[最优性原理]\label{thm}
|
||||
如果$u^*$在$[s,T]$上为最优解,则$u^*$在$[s,T]$任意子区间都是最优解,假设区间为$[t_0,t_1]$的最优解为$u^*$,则$u(t_0)=u^{*}(t_0)$,即初始条件必须还是在$u^*$上。
|
||||
\end{newprop}
|
||||
|
||||
@@ -233,7 +234,7 @@ This is one example of the custom environment, the key word is given by the opti
|
||||
|
||||
|
||||
\lipsum[6]
|
||||
\begin{newdef}[Contraction mapping]
|
||||
\begin{newdef}[Contraction mapping]\label{def:2.3}
|
||||
$(S,\rho)$ is the metric space, $T: S\to S$, If there exists $\alpha\in(0,1)$ such that for any $x$ and $y\in S$, the distance
|
||||
\begin{equation}
|
||||
\rho(Tx,Ty)\leq \alpha\rho(x,y)
|
||||
@@ -241,6 +242,9 @@ $(S,\rho)$ is the metric space, $T: S\to S$, If there exists $\alpha\in(0,1)$ su
|
||||
Then $T$ is a {\color{main} contraction mapping}.
|
||||
\end{newdef}
|
||||
|
||||
\ref{def:2.3}
|
||||
|
||||
\ref{them}
|
||||
\begin{remark}
|
||||
\begin{enumerate}
|
||||
\parskip=0pt \itemsep=0pt
|
||||
|
||||
Reference in New Issue
Block a user