mirror of
https://github.com/ElegantLaTeX/ElegantBook.git
synced 2026-01-26 04:14:35 +08:00
confirm the bug fixed
This commit is contained in:
@@ -1,4 +1,4 @@
|
|||||||
\documentclass[lang=cn,10pt,founder]{elegantbook}
|
\documentclass[lang=cn,10pt]{elegantbook}
|
||||||
|
|
||||||
\title{ElegantBook:优美的 \LaTeX{} 书籍模板}
|
\title{ElegantBook:优美的 \LaTeX{} 书籍模板}
|
||||||
\subtitle{Elegant\LaTeX{} 经典之作}
|
\subtitle{Elegant\LaTeX{} 经典之作}
|
||||||
|
|||||||
@@ -535,7 +535,8 @@ Note that a subgroup~$H$ of a group $G$ is itself a left coset of $H$ in $G$.
|
|||||||
Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of $H$ divides the order of $G$.
|
Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of $H$ divides the order of $G$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\ref{thm:lg}
|
As theorem \ref{thm:lg} refered.
|
||||||
|
|
||||||
\lipsum[3]
|
\lipsum[3]
|
||||||
|
|
||||||
|
|
||||||
@@ -543,6 +544,9 @@ Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of $
|
|||||||
The content of theorem.
|
The content of theorem.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
we can refer this theorem as \ref{thm:label text}.
|
||||||
|
|
||||||
|
|
||||||
\begin{proposition}[Size of Left Coset]
|
\begin{proposition}[Size of Left Coset]
|
||||||
Let $H$ be a finite subgroup of a group $G$. Then each left coset of $H$ in $G$ has the same number of elements as $H$.
|
Let $H$ be a finite subgroup of a group $G$. Then each left coset of $H$ in $G$ has the same number of elements as $H$.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
|||||||
Reference in New Issue
Block a user