From b3108df9c2e8a467b874d980b66d92f9900871cb Mon Sep 17 00:00:00 2001 From: EthanDeng Date: Mon, 18 Apr 2022 18:41:14 +0800 Subject: [PATCH] confirm the bug fixed --- elegantbook-cn.tex | 2 +- elegantbook-en.tex | 6 +++++- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/elegantbook-cn.tex b/elegantbook-cn.tex index b4f214a..525841d 100644 --- a/elegantbook-cn.tex +++ b/elegantbook-cn.tex @@ -1,4 +1,4 @@ -\documentclass[lang=cn,10pt,founder]{elegantbook} +\documentclass[lang=cn,10pt]{elegantbook} \title{ElegantBook:优美的 \LaTeX{} 书籍模板} \subtitle{Elegant\LaTeX{} 经典之作} diff --git a/elegantbook-en.tex b/elegantbook-en.tex index 936908d..e5e4ff5 100644 --- a/elegantbook-en.tex +++ b/elegantbook-en.tex @@ -535,7 +535,8 @@ Note that a subgroup~$H$ of a group $G$ is itself a left coset of $H$ in $G$. Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of $H$ divides the order of $G$. \end{theorem} -\ref{thm:lg} +As theorem \ref{thm:lg} refered. + \lipsum[3] @@ -543,6 +544,9 @@ Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of $ The content of theorem. \end{theorem} +we can refer this theorem as \ref{thm:label text}. + + \begin{proposition}[Size of Left Coset] Let $H$ be a finite subgroup of a group $G$. Then each left coset of $H$ in $G$ has the same number of elements as $H$. \end{proposition}