From d3ddd4f23285aef4846c9d8eca54f49edbbe8c55 Mon Sep 17 00:00:00 2001 From: EthanDeng Date: Thu, 17 Jan 2019 00:58:12 +0800 Subject: [PATCH] add readme file --- README.md | 11 +++++++++++ elegantbook.pdf | Bin 1586607 -> 1586607 bytes elegantbook.tex | 2 +- 3 files changed, 12 insertions(+), 1 deletion(-) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 0000000..7360bd6 --- /dev/null +++ b/README.md @@ -0,0 +1,11 @@ + + + +# Introduction + +ElegantNote is designed for Books. Just enjoy it! If you have any questions, suggestions or bug reports, you can visit [ElegantBook/issues](https://github.com/ElegantLaTeX/ElegantBook/issues). Looking for other templates designed by ElegantLaTeX Group? Please visit: [https://github.com/ElegantLaTeX](https://github.com/ElegantLaTeX). + + +如果你有其他问题、建议或者报告 bug,可以在 [ElegantBook/issues](https://github.com/ElegantLaTeX/ElegantBook/issues) 留言。如果你想了解更多由 ElegantLaTeX 项目组设计的模板,请访问 [https://github.com/ElegantLaTeX](https://github.com/ElegantLaTeX)。 + +This work is released under the LaTeX Project Public License, v1.3c or later. diff --git a/elegantbook.pdf b/elegantbook.pdf index 9a4a729a9703df1e42330cae2767f2350580cbed..365b4506d6165568fca7d0200d4d47177038bdc8 100644 GIT binary patch delta 226 zcmZ4gI${0mgbf>|8S^G@k}hXau+8$A9LOco>?qUjD8mTEOhC*G#4JF}3dC$c%nrmH zK+FlmTtLhX#5_RE3&eat%n!r@Kr9HvLO?7G#3Dc}3dCYSEWX`QMuL@#-Q2*y)YRB? zy04mq42-kAKuto5#o5i&z|7Uj#MH&o+0oL)#lX$j+``=4+||t3%+S%o)yPi4hLDo& KXSF0AaRC74(K%57 delta 226 zcmZ4gI${0mgbf>|8Pg_jk}hYFdYk1oIgm@F*-@t5QHBwSnShuXh*^M`6^Pk@m>q~Y zfS41Axqz4(h-A*fLIWSg@9NXh(&-{6o|!uSbV#qj07teyQ!gtv9YPq zbYC?I85n1KftrLAi?gY@k%@_^n~Q<7o0FlliHo_hfs3W7nX{#ftE0Jzvx%L84Iw4l K&uU3L;sO9=cRBX} diff --git a/elegantbook.tex b/elegantbook.tex index 330f169..37e78ca 100644 --- a/elegantbook.tex +++ b/elegantbook.tex @@ -144,7 +144,7 @@ Lebesgue 积分有几种不同的定义方式。我们将采用逐步定义非 设 $ f(x)=\sum\limits_{i=1}^{k} a_i \chi_{A_i}(x)$ 是 $E$ 上的非负简单函数,其中 $\{A_1,A_2,\ldots,A_k\}$ 是 $E$ 上的一个可测分割,$a_1,a_2,\ldots,a_k$ 是非负实数。定义 $f$ 在 $E$ 上的积分为 \begin{equation} \label{inter} - \int_{E} f dx = \sum_{i=1}^k a_i m(A_i). + \int_{E} f dx = \sum_{i=1}^k a_i m(A_i). \end{equation} 一般情况下 $0 \leq \int_{E} f dx \leq \infty$。若 $\int_{E} f dx < \infty$,则称 $f$ 在 $E$ 上可积。 \end{definition}