diff --git a/README.md b/README.md new file mode 100644 index 0000000..7360bd6 --- /dev/null +++ b/README.md @@ -0,0 +1,11 @@ + + + +# Introduction + +ElegantNote is designed for Books. Just enjoy it! If you have any questions, suggestions or bug reports, you can visit [ElegantBook/issues](https://github.com/ElegantLaTeX/ElegantBook/issues). Looking for other templates designed by ElegantLaTeX Group? Please visit: [https://github.com/ElegantLaTeX](https://github.com/ElegantLaTeX). + + +如果你有其他问题、建议或者报告 bug,可以在 [ElegantBook/issues](https://github.com/ElegantLaTeX/ElegantBook/issues) 留言。如果你想了解更多由 ElegantLaTeX 项目组设计的模板,请访问 [https://github.com/ElegantLaTeX](https://github.com/ElegantLaTeX)。 + +This work is released under the LaTeX Project Public License, v1.3c or later. diff --git a/elegantbook.pdf b/elegantbook.pdf index 9a4a729..365b450 100644 Binary files a/elegantbook.pdf and b/elegantbook.pdf differ diff --git a/elegantbook.tex b/elegantbook.tex index 330f169..37e78ca 100644 --- a/elegantbook.tex +++ b/elegantbook.tex @@ -144,7 +144,7 @@ Lebesgue 积分有几种不同的定义方式。我们将采用逐步定义非 设 $ f(x)=\sum\limits_{i=1}^{k} a_i \chi_{A_i}(x)$ 是 $E$ 上的非负简单函数,其中 $\{A_1,A_2,\ldots,A_k\}$ 是 $E$ 上的一个可测分割,$a_1,a_2,\ldots,a_k$ 是非负实数。定义 $f$ 在 $E$ 上的积分为 \begin{equation} \label{inter} - \int_{E} f dx = \sum_{i=1}^k a_i m(A_i). + \int_{E} f dx = \sum_{i=1}^k a_i m(A_i). \end{equation} 一般情况下 $0 \leq \int_{E} f dx \leq \infty$。若 $\int_{E} f dx < \infty$,则称 $f$ 在 $E$ 上可积。 \end{definition}