mirror of
https://github.com/ElegantLaTeX/ElegantBook.git
synced 2026-01-26 04:14:35 +08:00
hyperref toc clickable
This commit is contained in:
@@ -1,12 +1,12 @@
|
||||
\documentclass[11pt,fancy,twoside]{elegantbook}
|
||||
\documentclass[11pt,fancy,twocol]{elegantbook}
|
||||
|
||||
\title{An Elegant \LaTeX{} Template for Books}
|
||||
\subtitle{Classic Elegant\LaTeX{} Template}
|
||||
|
||||
\author{Ethan Deng \& Liam Huang}
|
||||
\institute{Elegant\LaTeX{} Program}
|
||||
\date{July 6, 2020}
|
||||
\version{4.0.2}
|
||||
\date{July 29, 2020}
|
||||
\version{4.0.3}
|
||||
\bioinfo{Bio}{Information}
|
||||
|
||||
\extrainfo{Victory won\rq t come to us unless we go to it. }
|
||||
@@ -15,6 +15,7 @@
|
||||
\cover{cover.jpg}
|
||||
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
@@ -630,7 +631,7 @@ Let $G$ be a finite group, and let $H$ be a subgroup of $G$. Then the order of
|
||||
\lipsum[3]
|
||||
|
||||
|
||||
\begin{proposition}{Size of Left Coset}{}
|
||||
\begin{proposition}[Size of Left Coset]
|
||||
Let $H$ be a finite subgroup of a group $G$. Then each left coset of $H$ in $G$ has the same number of elements as $H$.
|
||||
\end{proposition}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user