mirror of
https://github.com/ElegantLaTeX/ElegantBook.git
synced 2026-01-26 12:24:36 +08:00
frozen 3.x
This commit is contained in:
@@ -14,8 +14,6 @@
|
|||||||
\logo{logo-blue.png}
|
\logo{logo-blue.png}
|
||||||
\cover{cover.jpg}
|
\cover{cover.jpg}
|
||||||
|
|
||||||
\providecommand\qed{}
|
|
||||||
\renewcommand{\qed}{\hfill\ensuremath{\square}}
|
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
@@ -642,7 +640,7 @@ Let $H$ be a finite subgroup of a group $G$. Then each left coset of $H$ in $G$
|
|||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $z$ be some element of $xH \cap yH$. Then $z = xa$ for some $a \in H$, and $z = yb$ for some $b \in H$. If $h$ is any element of $H$ then $ah \in H$ and $a^{-1}h \in H$, since $H$ is a subgroup of $G$. But $zh = x(ah)$ and $xh = z(a^{-1}h)$ for all $h \in H$. Therefore $zH \subset xH$ and $xH \subset zH$, and thus $xH = zH$. Similarly $yH = zH$, and thus $xH = yH$, as required. \qed
|
Let $z$ be some element of $xH \cap yH$. Then $z = xa$ for some $a \in H$, and $z = yb$ for some $b \in H$. If $h$ is any element of $H$ then $ah \in H$ and $a^{-1}h \in H$, since $H$ is a subgroup of $G$. But $zh = x(ah)$ and $xh = z(a^{-1}h)$ for all $h \in H$. Therefore $zH \subset xH$ and $xH \subset zH$, and thus $xH = zH$. Similarly $yH = zH$, and thus $xH = yH$, as required.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
\begin{figure}[htbp]
|
||||||
|
|||||||
@@ -8,7 +8,7 @@
|
|||||||
%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%
|
||||||
% % !Mode:: "TeX:UTF-8"
|
% % !Mode:: "TeX:UTF-8"
|
||||||
\NeedsTeXFormat{LaTeX2e}
|
\NeedsTeXFormat{LaTeX2e}
|
||||||
\ProvidesClass{elegantbook}[2020/02/10 v3.10 ElegantBook document class]
|
\ProvidesClass{elegantbook}[2020/04/11 v4.0.0 ElegantBook document class]
|
||||||
|
|
||||||
\RequirePackage{kvoptions}
|
\RequirePackage{kvoptions}
|
||||||
\RequirePackage{etoolbox}
|
\RequirePackage{etoolbox}
|
||||||
|
|||||||
Reference in New Issue
Block a user