This commit is contained in:
EthanDeng
2019-01-15 15:07:45 +08:00
parent 11b032ae7e
commit 828e91ec7e
3 changed files with 12 additions and 7 deletions

View File

@@ -208,7 +208,7 @@
\setmonofont{Inconsolata}%Palatino Linotype \setmonofont{Inconsolata}%Palatino Linotype
%--% %--%
\RequirePackage{xeCJK} \RequirePackage{xeCJK}
\setCJKmainfont[BoldFont={},ItalicFont={}]{HYShuSongYiJ}%_GBK Adobe Song Std L \setCJKmainfont[BoldFont={},ItalicFont={}]{}%_GBK Adobe Song Std L
\setCJKsansfont[BoldFont={}]{线} \setCJKsansfont[BoldFont={}]{线}
\setCJKmonofont{线} \setCJKmonofont{线}
\XeTeXlinebreaklocale "zh" \XeTeXlinebreaklocale "zh"
@@ -328,6 +328,7 @@
\end{figure}} \end{figure}}
%% Example with counter %% Example with counter
\newcounter{Newexam}[chapter] \newcounter{Newexam}[chapter]
\renewcommand{\theNewexam}{\thechapter.\arabic{Newexam}} \renewcommand{\theNewexam}{\thechapter.\arabic{Newexam}}
@@ -388,7 +389,7 @@
\def\maketitle{% \def\maketitle{%
\thispagestyle{empty} \thispagestyle{empty}
\@cover % \@cover
\vfill \vfill
\vspace*{2cm} \vspace*{2cm}
\begin{center} \begin{center}

BIN
guide.pdf

Binary file not shown.

View File

@@ -1,10 +1,11 @@
%!TEX program = xelatex %!TEX program = xelatex
\documentclass[color=green,mathpazo,titlestyle=hang,11pt]{elegantbook} \documentclass[color=blue,mathpazo,titlestyle=hang,11pt]{elegantbook}
\author{ddswhu \& LiamHuang0205} \author{ddswhu \& LiamHuang0205}
\email{elegantlatex2e@gmail.com} \email{elegantlatex2e@gmail.com}
\zhtitle{优美的\LaTeX{} 书籍} \zhtitle{优美的\LaTeX{} 书籍}
\zhend{} \zhend{模板}
\entitle{Elegant\LaTeX{} Book} \entitle{Elegant\LaTeX{} Book}
\enend{Template} \enend{Template}
\version{2.10} \version{2.10}
@@ -174,7 +175,7 @@ $E$ and $F$ be two events such that $\mbf{P}(E)=\mbf{P}(F)=1/2$, and $\mbf{P}(E\
let $S=l^\infty=\big\{(x_n)\mid \exists\, M \text{ such that } \forall n, |x_n|\leq M,x_n\in \mathbb{R}\big\}$, $\rho_{\infty}(x,y)=\sup\limits_{n\geq 1}|x_n-y_n|$, show that $\big(l^\infty,\rho_{\infty}\big)$ is complete. let $S=l^\infty=\big\{(x_n)\mid \exists\, M \text{ such that } \forall n, |x_n|\leq M,x_n\in \mathbb{R}\big\}$, $\rho_{\infty}(x,y)=\sup\limits_{n\geq 1}|x_n-y_n|$, show that $\big(l^\infty,\rho_{\infty}\big)$ is complete.
\end{exercise} \end{exercise}
\begin{newthem}[勾股定理] \begin{newthem}[勾股定理]\label{them}
勾股定理的数学表达Expression 勾股定理的数学表达Expression
\[a^2+b^2=c^2\] \[a^2+b^2=c^2\]
其中$a,b$为直角三角形的两条直角边长,$c$为直角三角形斜边长。 其中$a,b$为直角三角形的两条直角边长,$c$为直角三角形斜边长。
@@ -187,7 +188,7 @@ let $S=l^\infty=\big\{(x_n)\mid \exists\, M \text{ such that } \forall n, |x_n|\
\lipsum[4] \lipsum[4]
\begin{newprop}[最优性原理] \begin{newprop}[最优性原理]\label{thm}
如果$u^*$$[s,T]$上为最优解,则$u^*$$[s,T]$任意子区间都是最优解,假设区间为$[t_0,t_1]$的最优解为$u^*$,则$u(t_0)=u^{*}(t_0)$,即初始条件必须还是在$u^*$上。 如果$u^*$$[s,T]$上为最优解,则$u^*$$[s,T]$任意子区间都是最优解,假设区间为$[t_0,t_1]$的最优解为$u^*$,则$u(t_0)=u^{*}(t_0)$,即初始条件必须还是在$u^*$上。
\end{newprop} \end{newprop}
@@ -233,7 +234,7 @@ This is one example of the custom environment, the key word is given by the opti
\lipsum[6] \lipsum[6]
\begin{newdef}[Contraction mapping] \begin{newdef}[Contraction mapping]\label{def:2.3}
$(S,\rho)$ is the metric space, $T: S\to S$, If there exists $\alpha\in(0,1)$ such that for any $x$ and $y\in S$, the distance $(S,\rho)$ is the metric space, $T: S\to S$, If there exists $\alpha\in(0,1)$ such that for any $x$ and $y\in S$, the distance
\begin{equation} \begin{equation}
\rho(Tx,Ty)\leq \alpha\rho(x,y) \rho(Tx,Ty)\leq \alpha\rho(x,y)
@@ -241,6 +242,9 @@ $(S,\rho)$ is the metric space, $T: S\to S$, If there exists $\alpha\in(0,1)$ su
Then $T$ is a {\color{main} contraction mapping}. Then $T$ is a {\color{main} contraction mapping}.
\end{newdef} \end{newdef}
\ref{def:2.3}
\ref{them}
\begin{remark} \begin{remark}
\begin{enumerate} \begin{enumerate}
\parskip=0pt \itemsep=0pt \parskip=0pt \itemsep=0pt